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ABSTRACT: Statistical ideas behind the analysis of experiments related to crop composition and the genetic factors underlying
composition are discussed. The emphasis is on concepts rather than statistical formulations. Statistical analysis and biological
considerations are shown to be complementary rather than contradictory, in that the statistical analysis of a data set depends on
the experimental design, that no amount of statistical sophistication can rescue a badly designed study, and that good
experimental design is crucial. The traditional null hypothesis significance testing approach has severe limitations, but p values
and statistical significance still often seem to be the primary objective of an analysis. Emphasis instead should be on identifying
the size of effects that are biologically important and, with the involvement of the “domain” scientist, using these to help design
experiments with appropriate sample sizes and statistical power. The issues discussed here are also directly applicable to other
areas of research.
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■ INTRODUCTION

The International Life Sciences Institute’s (ILSI) International
Food Biotechnology Committee (IFBiC) held its Plant
Composition Workshop in September 2012. This date was
close to the 50th anniversary of the death of R. A. Fisher in
Adelaide, Australia, on July 29, 1962. Fisher was an outstanding
geneticist and statistician. His wide-ranging contributions to the
development of statistics, experimental design, and genetics
underpin many of the topics discussed at the 2012 ILSI IFBiC
workshop.
Through his work at Rothamsted and later at University

College London and Cambridge University, Fisher laid the
foundations for many developments, including the modern
theory and basis for the design of experiments and the analysis
of variance (ANOVA) methodology. Fisher was one of the
founders of population genetics and initiated the concept of
significance testing.1,2 His contributions, such as Fisher’s exact
test, appear throughout any consideration of the statistical
methods used in the interpretation of composition data.
The objective of this paper is to discuss statistical concepts,

some originally developed by Fisher, used in the analysis of
experiments related to the composition of crops and the genetic
factors that underlie their composition. This paper concentrates
on concepts rather than detailed statistical formulations and
equations and is aimed at the reader who wants to know why
something is done rather than how it is done. The concepts are
also directly applicable to other areas of research. Two main
arguments will be put forward: first, the over-riding importance
of experimental design that precedes statistical analysis, and,
second, the limitations of the concept of statistical significance
and the mistaken equating of it with biological relevance or
importance.
Investigations in the area of research on the composition of

crops and the genetic factors that underlie their composition
encompass a wide range of objectives from the assessment of
agricultural field trials to the safety evaluation of foods derived
from modern technologies. One of the objectives of this paper
is to lay out some of the statistical issues related to these studies

so that even if a statistical analysis is unable to provide a
“perfect solution,” an appreciation of the statistical issues can
help in part of what could be termed a weight of evidence
approach. Statistical considerations are a crucial aspect of an
evidence-based approach.3

Some of the discussion here is based on work carried out by
the Statistical Working Group of the European Food Safety
Authority (EFSA) Scientific Committee to help EFSA scientific
panels and committees in their assessment of biologically
relevant effects.4 An opinion produced by this group was
primarily intended for EFSA experts and staff, with the
objective of clarifying the main concepts and definitions
associated with statistical significance and biological relevance.
It was considered that this may also be useful for risk managers
and risk communicators in general. EFSA has also produced a
number of other documents in which experimental design and
statistical analysis issues are discussed in areas ranging from
field design to 90 day toxicology studies.5−7

■ EXPERIMENTAL DESIGN

The concepts of statistical significance and hypothesis testing
dominate many scientists’ thinking about the statistical analysis
of experimental data almost to the exclusion and detriment of
other aspects of statistical analysis. A primary question is “What
is the purpose or objective of a statistical analysis?” In many
discussions, a statistical analysis and a statistician’s role are
equated with the finding of statistical significance using, for
example, one of the various statistical methods to test a null
hypothesis of no difference between a treated group and a
control group. However, the statistician has a far more
important role in the design of studies.
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In practice, the design of the experiment can be considered
the strategy and the statistical analyses used, the tactics.
Statistical thinking is consequently important at the strategic
experimental design stage, and the analysis is consequently
secondary to and dependent on good experimental design.
Statistical tests rely on the implicit assumption that the design is
correct. No amount of statistical testing will rescue results
obtained in a poorly designed or nondesigned study.
Researchers are frequently exhorted to consult a statistician

before starting an experiment. The following quote from Fisher
remains apposite: “To call in the statistician after the
experiment is done may be no more than asking him to
perform a post-mortem examination: he may be able to say
what the experiment died of.”8

The following quotation from Price and Underhill provides
an example of a study design for composition research: “Studies
are usually with the GM plant variety and its parent. Several
field locations are selected, representing the area where the GM
plant is expected to be grown. Within a location, growing plots
of land are allocated to the experiment. Usually blocks of two or
more plots are formed to ensure that the treated and control
plants are grown under the same conditions.”9

Experimental design in the agricultural sciences has been
heavily influenced by Fisher, who first developed the factorial
design: experiments where two or more factors are investigated
in all possible combinations (based on Mendelian genetic
concepts).10,11 Fisher and co-workers developed a range of
experimental designs, such as the randomized complete block,
the split plot, the Latin square, and the factorial designs in a
series of influential books and papers. Some of these designs
are, to some extent, contrary to much of conventional teaching
of varying just one factor and keeping all the others constant,
called the one factor at a time (OFAT) approach.12

The factorial approach has developed into the field of design
of experiment (DOE) methodology. Fisher demonstrated that
these DOE approaches such as the factorial design (where there
is systematic and simultaneous variation of experimental
conditions such as the classical field trials involving nitrogen,
phosphorus, and potassium fertilizers) are both economically
and scientifically more efficient than the traditional OFAT
approach. They can identify the multiple factors (and the
interactions between them) that affect results appreciably. The
DOE methodology further identifies the levels of these factors
that optimize results as well as minimize the number of
independent studies needed and the experimental units
required. This approach is ideal for topics such as protocol
development, in which there may be a number of factors that
can affect the experimental results. The DOE approach is now
widely used in industrial settings, such as the manufacturing
and chemical industries, to identify optimal conditions for
processes under which to operate and to reduce the number of
runs needed to identify these. DOE methodology could, for
instance, be an efficient approach to identifying optimum
allocation or use of resources in studies in which there are a
number of different factors for which conditions could be
varied. The advantages of the factorial approach are,
unfortunately, still not widely appreciated in many research
areas. The agricultural basis for many experimental designs can
be seen in the use of terms such as blocks and plots.

■ HYPOTHESIS TESTING AND STATISTICAL
SIGNIFICANCE

The concept of statistical significance and hypothesis testing
unfortunately dominates many scientists’ thinking about the
statistical analysis of their data, almost to the exclusion and
detriment of other aspects of statistical analysis. The two
concepts are different, and Cox13 distinguished between
statistical significance testing (the Fisherian approach) and
hypothesis testing (the Neyman−Pearson approach).
One of Fisher’s most well-known legacies is the significance

test, which together with reports of the p value and asterisks
adorn many tables of results. Fisher envisaged a test of
significance that then provided him with evidence on which to
base further work.11 The test was based on a test of whether a
single model fitted the data. There was no alternative
hypothesis. The use of the statistical test for hypothesis testing
derives from the work of Jerzy Neyman and Egon Pearson in
the late 1920s and early 1930s.14

Statistical significance later became a concept associated with
the use of a specific statistical test to test a null hypothesis of no
difference between two groups such as a treated group or a
control group. This has been referred to as the null hypothesis
significance testing (NHST) approach.15 The concepts are (or
should be) familiar to many: Type I or Type II alpha and beta
errors, power, and significance levels. The familiar 2 × 2 table
can be used to illustrate the NHST approach. However,
understanding the NHST approach is difficult in part because it
is a mixture of two different concepts. It was (and remains)
deeply controversial.
The standard NHST approach is a hybrid of the Fisher and

Neyman−Pearson processes.16 Fisher was initially interested in
testing a single null hypothesis and not in the alternative
hypothesis. This test of the null hypothesis was not particularly
important and was to be used as a guide rather than a decision-
making process. There was no alternative hypothesis. Neyman
and Pearson wanted to compare two hypotheses that relate to
the concept of the null and alternative hypotheses. This is
particularly relevant for quality control type investigations.
Gigerenzer provides a detailed discussion of some of the

issues around the null hypothesis and statistical significance
testing.17 He discusses the long-running (and often acrimo-
nious) debate between Fisher and Neyman and Pearson over
the context of significance testing, pointing to how Fisher had
initiated the significance level but moved in later life to take a
more nuanced view. On the other hand, Neyman and Pearson
maintained their interest in the use of the decision rule
approach.
In the Neyman−Pearson method, the only criterion is

whether the hypothesis is rejected. It is a binary decision with
the critical value for a test statistic equivalent to, say, p = 0.05 as
the criterion. The result is then declared statistically significant
at p = 0.05 and the alternative hypothesis is accepted in contrast
to the null hypothesis. The Fisherian approach is to report the
exact p value and use this value only to gauge where the null
hypothesis has been rejected and not whether another
hypothesis has been accepted.
Note that in the NHST approach, the test statistic and its

associated p value depend on a number of factors such as
sample size, statistical test used, and amount of variability. This
means that the actual size of difference that is just significant
(i.e., reached the critical value of the test statistic) will vary from
study to study. In addition, each experiment is, in effect, one
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from a population of possible experiments and is thus only an
estimate (with a distribution) of the true difference. By “bad
luck,” the actual experiment performed can give an estimate in
one of the tails and the study would be reported as “not
significant” even when there is a real difference (a Type II
error).

■ CRITICISM OF THE USE OF SIGNIFICANCE
Some think that producing statements about the presence or
absence of statistical significance is the role of the professional
statistician. Protocols often include language stating that a level
of probability <0.05 will be accepted to indicate statistical
significance for the comparisons. According to Dallal, “For
better or worse, the term statistically signif icant has become
synonymous with p ≤ 0.05.”18

As noted earlier, the p value and the significance test are two
different things. Fisher was responsible for the first use of p
values and the term test of signif icance: “Critical tests of this kind
may be called tests of significance, and when such tests are
available we may discover whether a second sample is or is not
significantly different from the first.”11

Importantly, the p value is the probability that a difference as
large as or larger than that seen in the experiment would have
occurred by chance alone if the treatment groups were in fact
not different. It is not the probability that the null hypothesis is
true, which is a frequent but serious misinterpretation.
Statistical comparisons are often reported as significance

levels, with one asterisk to indicate p ≤ 0.05, two asterisks to
indicate p ≤ 0.01, and three asterisks to indicate p ≤ 0.001.
Values >0.05 are often reported as nonsignificant or not
significant, although Altman in particular does not recommend
this.19 The choice of the three levels relates to the tables for the
three levels of 0.05, 0.01, and 0.001 in the statistical tables
produced by Fisher and Yates.20

Many authors now argue against this convention. Yates
accidentally introduced this “star” nomenclature but abhorred
its subsequent use and vehemently opposed its unthinking use.
In 1937, Yates produced a monograph on factorial experiments
that became the standard work of reference on the ANOVA.21

Asterisks were used to indicate successive footnotes, but were
interpreted by adherents as a new standard notation. Yates
regretted that this gave too much emphasis to the significance
test and criticized some scientific research workers for paying
undue attention to them.22

The term signif icant has a number of meanings, some of
which are technical and others less so. In 2008, Nature
published a list of disputed definitions that included the word
“significance”.23 In regard to this list, Reese noted that “Too
many scientists  and editors  take the line you reproach
and use statistical significance as a criterion of importance.”24

Salsburg25 (p 98) provides an interesting discussion on how
the word “significant” changed its meaning:

The word was used in its late-nineteenth-century meaning,
which is simply that the computation signified or showed
something. As the English language entered the twentieth
century, the word significant began to take on other
meanings, until it took on its current meaning, implying
something very important. ... Unfortunately, those who use
statistical analysis often treat a significant test statistic as
implying something closer to the modern meaning of the
word.
Many statisticians abhor the use of the NHST and the “cult

of the p value,” yet is seems to have taken root as part of the

basic requirements that the regulator and the referee/journal
editors require. Attaining a p value <0.05 sometimes seems the
sole objective of the experimenter. (It should be noted, though,
that the R statistical package, developed by statisticians and
with many enthusiastic adherents, attaches asterisks to the
output of the ANOVA!)
There have now been many criticisms of the use of

significance tests. In their book titled The Cult of Statistical
Signif icance, Ziliack and McCloskey provide a detailed criticism
of the concept of statistical significance and discuss some of the
history and philosophy related to the development of the
concept, as well as list many statisticians critical of the
approach.26 Nester maintains a large compendium of quotes
(too numerous to reproduce here) from many leading
statisticians.27,28 Dallal also provides an interesting set of
quotes criticizing significance testing.18 One example is from
Jacob Cohen, one of the developers of power calculations, who
explained that he wanted to call the NHST process “statistical
hypothesis inference testing” but according to anecdotes was
(wisely) warned by his wife that his desire to reduce this to an
acronym was not a good career move.15 Bill Thompson also
provides a list titled “402 Citations Questioning the
Indiscriminate Use of Null Hypothesis Significance Tests in
Observational Studies”. This list was last updated in February
2001 but shows the long-standing and relevant criticisms of this
method29 that, as Ziliack and McCloskey suggest, date back at
least to the correspondence of W. S. Gossett (the Student of
Student’s t test) with other statisticians in the 1920s.
These regular arguments against the use of and over-reliance

on p values and significance testing are familiar to statisticians
who have heard them many times before. Hubbard and Lindsay
recently argued that p values are not useful in the field of
psychology.30 Many of their arguments are generalizable to
other areas of research and link into the idea that p values
exaggerate the evidence against the null hypothesis by, for
instance, encouraging publication bias and by the lack of a
relationship between the p value and the effect size obtained in
a study. In a series of papers, especially his 2005 PLoS paper,31

Ioannidis has highlighted the problems in a number of
biological fields including genome-wide association studies,
gene expression experiments, and the lack of reproducibility of
highly cited papers that result from an over-reliance on
statistical significance. Some statisticians have urged the
replacement of the p value, suggesting in its place an estimation
approach based on confidence limits or fundamentally different
approaches built around Bayesian statistical methods (discussed
below).
There have been very few supporters of the continued use of

the p value. One example is Chow, who gave a lengthy and
complex defense of the value of NHST in the area of theory
corroboration,32 which is summarized in a document by Fiona
Fidler.33 Partial support or at least an argument for the
continued use of the p value is given by Moran and Solomon16

and by Senn, who offered “a limited defense of P-values only”
and stated that “P-values are a practical success, but a critical
failure”.34

In 2011, EFSA4 made the following recommendations
concerning statistical significance and p values:
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Statistical signif icance, when expressed by a P-value, relates
to the probability of having obtained results as (or more
extreme than) those observed, given that the null hypothesis
H0 is true... Statistical signif icance is considered as just one
part of an appropriate statistical analysis of a well designed
experiment or study... Identifying statistical signif icance
should not be the primary objective of a statistical analysis.
EFSA made a further recommendation that in any discussion

of statistical analysis, particularly when inference is to be carried
out, the word “significance” is reserved for its specific/narrow
interpretation.

■ BIOLOGICAL IMPORTANCE OVER STATISTICAL
SIGNIFICANCE

EFSA defined a biologically relevant effect as “an effect
considered by expert judgement as important and meaningful
for human, animal, plant or environmental health. It therefore
implies a change that may alter how decisions for a specific
problem are taken.”4

A biologically important or relevant effect can be related to
the effect size and to the concept of power and sample size
calculations. These can be carried out, for instance, using
software packages where appropriate information is entered to
obtain either the sample sizes associated with a particular power
or, alternatively, the power for a given design. Power is the
probability of rejecting the null hypothesis when this is false
and thus not committing a Type II error. Defining what is a
biologically relevant or important effect is not straightforward.
It is not a statistical decision, although it has important
consequences for the design, statistical analysis, and inter-
pretation of an experiment. One approach at the design stage is
to identify the size of effect that would be the “minimum
difference that you can afford to miss”.35 This relates to
concepts such as the minimum clinically important difference
or the clinically relevant difference (CRD). The CRD is the
smallest treatment effect that is clinically meaningful or
clinically relevant.36 This difference is also referred to in
sample size calculations as the effect size and can be
standardized by expressing it in standard deviation (SD)
units. Cohen discusses the use of such standard effect sizes in
calculating sample sizes and gives examples of small, medium,
and large effect sizes,37 whereas Lenth provides an alternative
viewpoint that is critical of the unthinking use of such
standardized effect sizes.38

The choice of an appropriate effect size requires an
appreciation of the biological material and context being
investigated, and there is likely to be an appreciable amount of
expert, but nevertheless subjective, judgment in the choice.
There may be no consensus as to what is the minimum
difference that is considered tolerable if the effect might be
considered a toxicological response. The choice of the effect
size is, therefore, a decision for the domain scientist based on
his or her expert knowledge.
An experiment is designed for what is called the primary end

point in clinical trials, which is the measure that is most directly
related to the main purpose of the study. The power associated
with the design for the other secondary measures or end points
will be based on the nature of the measure and the variability of
the material. In practice, experiments often have multiple
measures of interest, and estimating sample sizes to consider all
measures simultaneously is more complex.39

Relating to a standardized effect size is one way to progress.
A sample size of 20 has a power of approximately 85% (exact is

86%) to detect a 1 SD difference, if it really exists, as statistically
significant at p = 0.05 in a two-sided test. The crucial issue is
how biologically important a 1 SD difference is between two
groups in, for instance, a hematological or clinical chemistry
measure. Different measures will have different levels of
detection or “resolution.” A study designed to detect an effect
in the primary end point based on a biologically important
difference of, say, 0.5 SD will also show effects in other
measures as significant at this level. In some cases, these
differences, although significant, are not of biological
importance. One example is in the standard 90 day
toxicological studies. With relatively large animal studies (20
per group), significant effects can be detected in clinical
chemistry or hematological measures that, although real
treatment-related effects, are minor changes and not considered
of biological importance by the study toxicologist. The
ambiguous meaning of the term “significance” can be a source
of controversy in such cases. Guidelines such as those from the
Organisation for Economic Co-operation and Development
(OECD) include phrases such as “Evaluation of data should
include a discussion of both the biological and statistical
significance”40 or “Both biological and statistical significance
should be considered together in the evaluation”.41

Price and Underhill state the following for instructions for
the statistical analysis of the composition data: “Compositional
analysis is conducted using validated analytical methods, and
the data are subjected to an appropriate statistical analysis,
resulting in probability estimates.”9 The authors also state for
summary statistics that “Data for each plant component should
be assembled in tabular form. A mean, p or F value, and
literature range are required.”9

An experiment designed with 80% power for the primary end
point may have higher or lower power for the biologically
important difference for the other secondary end points. There
are now large databases of information, such as the U.S.
Environmental Protection Agency’s Toxicity Reference Data-
base (ToxRefDB),42 that could provide some guidance to the
size of effects likely to be detected with high power in some of
the standard designs in areas such as composition analysis or
toxicology. These specific experimental designs are to a large
extent based on historical experience and are often based on
having appropriate power to detect treatment-related increases
in the incidence of, for instance, binary traits such as the
presence or absence of a pathological condition. The power of
standard studies to detect such increases as significant is low
but is quite powerful for some quantitative measures.
Such databases could provide estimates of the relative

variability of the measures used in these designs. These
estimates of variability can then be used to provide a guide to
the size of effects that would be detected in specific designs and
provide the basis for discussion among domain scientists as to
their biological importance.
The EFSA steering committee recommended that “... the

nature and size of biological changes or differences seen in
studies that would be considered relevant should be defined
before studies are initiated. The size of such changes should be
used to design studies with sufficient statistical power to be able
to detect effects of such size if they truly occurred.”4

■ ALTERNATIVES: CONFIDENCE INTERVALS AND
ESTIMATION

Dissatisfaction with the NHST approach is partly behind the
growing argument for more emphasis to be put on estimates of
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the size of effects and the confidence associated with these
estimates. This reduces the problem of a small and biologically
unimportant effect being declared statistically significant and
that of attempting to convert a result into a “binary” positive or
negative conclusion on the basis of a p value of 0.049 or 0.051,
for example.
The primary interest in food safety research and agriculture is

to estimate the size of the interventions in an experiment. The
question is often how big the effect is rather than is there a
significant effect. Cochran and Cox point out that “In many
experiments it seems obvious that the different treatments must
have produced some difference, however small, in effect. Thus
the hypothesis that there is no difference is unrealistic: the real
problem is to obtain estimates of the sizes of the differences.”43

It has been proposed for some time that confidence intervals
should be reported in journals.44,45 An increasing number of
journals have now, in fact, expressed their preference for
confidence intervals over p values (e.g., the British Medical
Journal’s instruction for authors, http://bmjopen.bmj.com/
site/about/guidelines.xhtml).
The information from a significance test is rather limited,

especially when reduced to the statement that an effect is
statistically significant or not by rejecting or accepting the null
hypothesis. A confidence interval provides more information
than in a significance test by giving an estimate of the size of the
effect, such as the mean difference, together with information
on the variability expressed by, say, the width of the 95%
confidence interval. A two-sided 95% confidence interval also
equates to a hypothesis test because if the interval does not
straddle zero, this means that the null hypothesis of zero is
rejected at p = 0.05. Confidence intervals can also be included
on graphical presentations of the results. Weller provides a
discussion of some of the history behind statistical guidelines.46

■ EQUIVALENCE TESTING: INFERIORITY AND
SUPERIORITY

The primary function in food, agriculture, and ecology research
is to estimate the magnitude of treatment effects. In an
approach based on estimation, typical relevant questions might
include the following: “By what proportion is mortality
increased through obesity?” or “By how much does the
mortality rate increase for each unit increase in cholesterol and
at what level does this relationship cease to be linear?” rather
than “Is there a significant difference in mortality between
normal and obese males?” or “Is there a significant increase in
mortality when cholesterol is increased?” As Cox and Snell
commented, “In practice it is rarely necessary to find P at all
precisely.”47 There has been a move away from the idea of
hypothesis testing to one of testing for equivalence.
Two trends are evident: the concept of substantial

equivalence, developed by the OECD in 199348 in the novel
food area, and the concept of equivalence in testing
pharmaceuticals. An important consideration is to distinguish
between bioequivalence and substantial equivalence.
Substantial equivalence is a concept that maintains that a

novel food (e.g., genetically modified foods) should be
considered the same as and as safe as a conventional food if
it demonstrates the same characteristics and composition as the
conventional food.49 Substantial equivalence is important from
a regulatory perspective. Bioequivalence is a concept whereby
two pharmaceutical products are judged to have sufficiently
similar characteristics as to be considered to be essentially the
same. Bioequivalence testing is an alternative approach built

around the weakness of the NHST approach when the aim is to
show an absence of an effect. The aim is to avoid the dangers of
declaring no difference between the two groups (and wrongly
claiming the null hypothesis accepted) through the use of small
samples, poor experimental design, and inappropriate statistical
methods.
The methods developed in the clinical trial field were

developed to surmount the problems of using statistical tests to
show, for instance, that two pharmaceutical formulations (e.g., a
proprietary and a generic version) are similar rather than
different. An example is the U.S. Food and Drug Admin-
istration (FDA) bioequivalence guidelines in which tests of
point-null hypotheses have fallen from favor and equivalence
procedures are mandated.50

Instead of trying to show that there is no statistically
significant difference between two formulations, the objective of
these methods is to show that although there may be a
difference, this is sufficiently small to be considered as not
biologically important or relevant. The approach was developed
to show that equivalence had been attained if the 90%
confidence intervals of the difference in the specified
pharmacokinetic measures lay within a range between 80 and
125% of the ratio of the two formulations.
This concept is based on an estimation approach using a

confidence interval rather than the NHST and has been
extended in the pharmaceutical industry to develop the concept
of inferiority and superiority trials. This trend away from formal
hypothesis testing approaches to methods based on estimation
(such as equivalence, noninferiority, and superiority tests) and
to statistical modeling is likely to continue.
Critical to the design of equivalence studies is the need to

predefine the acceptable intervals for sample size and power
calculations. In bioequivalence, this is the term delta (Δ), which
is the noninferiority margin or “... the largest difference that is
clinically acceptable, so that a difference bigger than this would
matter in practice”.51

It is important to appreciate that the absence of a significant
result is not a proof for the equivalence of the new formulation
against the standard formulation. This is a clear example of the
concept that “absence of evidence is not evidence of
absence”.52,53

There is an important contrast between the pharmaceutical
and agriculture sectors. Bioequivalence tests are usually
crossover designs in which the subject is his or her own
comparator, unlike agricultural trials in which they are
independent units. The choice of lower and upper limits or
boundaries as 80−125% is not a statistical decision but rather
one based on the expertise of the domain scientist.
Considerable discussion within the sector was carried out by
experts in the bioequivalence fields. Similarly, the choice of the
90% confidence intervals is based on a choice made by domain
scientists as it corresponds to the 5% level used in statistical
tests.
The conclusion of equivalence or noninferiority from a study

depends on the choice of Δ, so it must be decided on at the
design stage where the choice and justification should be
predefined and specified in the study protocol. Similarly, the
objectives of the trial (the comparator, measures or end points,
populations, sample sizes, and statistical analysis plan) are all
defined in the study protocol.
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■ MULTIPLE COMPARISONS

Many studies have multiple measures, and there is the potential
complication of the multiplicity of tests. For example, many
toxicological studies have multiple measures. The 90 day
chronic feeding studies, for instance, involve multiple measure-
ments: body weights, organ weights, clinical chemistry, urine
analysis, and hematology. As many as about 50 different
measures may be made in all, together with repeated measures
of body weight and food intake.
If a NHST approach is taken, there is a high probability of a

number of comparisons being considered significant just by
chance alone (Type I errors). With 200 independent
comparisons in which there is no difference, 10 comparisons
on average will be declared significant using the critical value
associated with a p value <0.05. One approach to avoid this is
the use of multiple comparison methods. In practice, however,
many measures are often correlated with one another, and not
taking these correlations into account makes many of the
multiple comparison methods overly conservative.
Some of the most commonly used methods include the

Bonferroni correction and Dunnett’s test. However, others such
as Duncan’s or Student−Newman−Keuls are in widespread use
depending on the particular research field. In the SPSS package,
for instance, there are 18 different post hoc tests applicable for
multiple comparisons in a one-way ANOVA. Each method asks
different questions about the comparison and makes different
assumptions. Multiple comparisons can be applied, for instance,
to measures of the expression of many different genes in a
microarray experiment or between values of a single variable
across different treatment groups. Multiple comparisons may be
a posteriori and differ, in general, from the a priori comparisons
and contrasts that are built either explicitly or implicitly into the
design (such as a dose−response relationship).
These methods effectively “dampen” the significance level.

The Bonferroni correction can be very conservative, especially
when there are many measures. Dunnett’s test is designed
specifically to adjust the error rate for multiple comparisons for
comparing a number (k − 1) of treatment groups with a
control group and is widely used in toxicology after an initial
ANOVA. Often the methods are used to make significant
effects disappear because they are not considered biologically
important. A trend test is possibly more relevant and more
powerful when there are multiple dose levels.
The false discovery rate (FDR) developed in part to help

analyze large-scale microarray data is a different approach in
that it compares the actual number of differences identified as
significant with those expected to be significant purely by
chance if there were in fact no differences.54 It produces a q
value, which is the expected number of effects that are false
positives if the p value associated with a particular comparison
was chosen as the threshold for significance.
The FDR is less conservative than the Bonferroni method

and has higher power to identify true positive results. An FDR
adjusted p value (or q value) of 0.05 suggests that 5% of
significant tests may be false positives, whereas a p value of 0.05
implies that 5% of all results will be false positives if there really
is no difference.
The interpretation of the methods such as the Bonferroni

and the FDR is complicated because the comparisons of the
measures are, in general, not independent. For example, body
weights on one day are likely to be correlated with those a little
later in the study. Correlations between the measures mean that

it is difficult to calculate the p values associated with the
multiple comparisons accurately.
In confirmatory trials in the pharmaceutical industry, the

decision is based very firmly on p values, and multiplicity issues
associated with the Neyman−Pearson hypothesis-testing
approach may be important. On the other hand, the Fisherian
significance test approach may be a useful assessment device in
exploratory/hypothesis-generating studies.
Some journals have been quite prescriptive in their

requirement for specific multiple comparison approaches.
This has resulted in some fairly strong responses from some
statisticians. The GenStat manual55 points out that many
statisticians have reservation over this as they do not feel it is
good statistical practice. Nelder56 and Bryan-Jones and
Finney57 give an overview of this argument. These methods
are also considered inappropriate for factorial-type designs or
for data in which there are quantitative doses.58,59 It is argued
that multiple-comparison methods are considered unnecessary
if there are only a few treatments or if the specific comparisons
should have been identified beforehand (a priori) or the
treatments have some sort of structure.60

■ MODELING
One of Fisher’s other great legacies is ANOVA. Many people
are familiar with it because of the complicated series of
equations that were once needed to produce the ubiquitous
ANOVA tables leading to the F test (named by George
Snedecor in honor of Fisher). Less appreciated is that the
ANOVA is an entry into the area of statistical model building
and part of a “network” of models that link a wide range of
statistical methods such as linear and multiple regression,
ANOVA, and analysis of covariance (ANCOVA). ANOVAs are
a special case of the general linear model, with the
interconnectedness of statistical tests also illustrated by the
pooled two-sample t test being a special case of a one-way
ANOVA with only two groups.
The ANOVA is a convenient general method that, while

making a number of assumptions that are difficult to check with
small sample sizes (independent experimental units, normally
distributed random errors, and homogeneity of within group
variances), is generally robust to moderate violation of these
assumptions.
One of the fruitful areas of research in statistics has been the

development of relationships between different methods. The
original ANOVA was a convenient way of doing the algebra,
but matrix algebra opens up the general linear model (GLM)
approach and unified ANOVA with regression modeling.
Relaxing assumptions leads to more sophisticated modeling
approaches by including, for instance, correlations between
measures such as in repeated measures or time series
approaches.
The GLM is a generalization of the ordinary least-squares

approach (used in ANOVA, ANCOVA, and multivariate
ANOVA) and is a special case of the generalized linear
model (GLZ). The GLZ is a unified method used to extend the
GLM approach to incorporate responses other than those
based on the normal distribution. Nelder and Wedderburn
developed the concept of the GLZ, which placed all of the
commonly used models (binomial, logit, probit, and normal) in
a unified framework.61 The GLZ can be further generalized.
Generalized linear mixed models (GLMM) are an extension of
the GLZ with random effects and are also called generalized
linear mixed-effects models. Generalized estimating equations
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are another extension of GLZ involving algorithmic adjust-
ments used to model longitudinal or clustered data and to
estimate regression coefficients. It is to some extent a matter of
choice whether to use simple methods rather than the more
complex models.
Building empirical statistical models to try to make

predictions is a common, but challenging, feature of many
scientific areas. George Box famously said “All models are
wrong, but some are useful”.62 Identifying useful models is
critical to avoiding results that may look feasible but are, in fact,
incorrect and in some cases seriously misleading.
Modeling leads into the area of data exploration, data mining,

or pejoratively, data trawling. Considerable skill is needed to
move from explanation to accurate prediction and to avoid
overfitting (where the model describes the underlying “noise”
in the system rather than the underlying relationship). A
challenge is to build models in which there are complex
relationships between the inputs while also needing to validate
and test these models. Modeling approaches derive from both
statistical modelers and from machine-learning practitioners
and come with different methodologies and terminologies.

■ MULTIVARIATE AND GRAPHICAL METHODS

Food composition data are multivariate in that multiple
variables are measured on the same sample. A wide range of
methods are now available for the graphical presentation of
data. Tukey developed the exploratory data analysis (EDA)
approach with a concentration on graphical techniques as an
approach for hypothesis generation rather than testing as
providing an alternative approach to the analysis of large data
sets.63 Many multivariate techniques are available for the
exploration of complex data sets in which there is some degree
of correlations between the different varaibles.64 Methods can
be broken down into supervised learning approaches (e.g.,
canonical variate analysis), in which there are pre-existing
groupings in the data set, as well as unsupervised learning
approaches (e.g., principal component analysis and hierarchical
cluster analysis), in which the aim is to identify possible
groupings in a set of data. Such approaches are widely used in
areas such as genomics and metabolomics and provide highly
visual approaches to the representation of complex data sets.
They can help illustrate the relationships between individual
samples as well as provide insight into the levels of variability
between and within groups. For example, the paper by Shewry
in this issue illustrates how multivariate methods can be used to
describe and portray the composition variability among 200
cereal lines.65

■ BAYESIAN APPROACHES

The debate about hypothesis testing and estimation can be
deeply philosophical, bringing in the logic of science and the
value system of scientists. Alternative statistical methods such as
the differences between frequentists and Bayesians are based on
fundamentally different philosophies and methods. Put very
simply, frequentists will base their analyses on just the data
available to them, whereas the Bayesians may introduce their
degree of belief or prior probability into the analysis. In
practice, the choice of a prior probability for inclusion in
Bayesian analyses can be problematic.
It should now be clear that the Neyman−Pearson approach

is not universally approved of and Bayesians reject the
approach. Bayesians represent a statistical school of thought

that argues that inferences about any unknown parameter or
hypothesis should be incorporated into a probability distribu-
tion given the observed data. This is in contrast to frequentists,
who base their support for a hypothesis or parameter value by
an assessment of the probability of the observed data given the
hypothesis or value.
Ideally, the probability that the scientist would like to know

is, given a significant result, what the probability is that this is a
true positive rather than a false positive rather than the
frequentist’s question of what is the probability of a hypothesis
being false given the results
Bayesian statistics derive from a posthumous publication in

the 18th century by the British nonconformist minister,
Reverend Thomas Bayes. Although long appreciated by
statisticians for its potential, it was the advent of increased
computing power and the development and application in the
1990s of specialist algorithms such as the Gibbs sampler and
the Metropolis−Hastings Markov chain Monte Carlo method
and suitable software such as Bayesian inference using Gibbs
sampler (BUGS) that have allowed its potential to be realized
for real-life problems. Monte Carlo methods are computer
simulations using random numbers and named after the town
with a casino.
Although Bayesians begin from a different intellectual

starting point, the results of analyses are often similar to
those done by frequentists, and Bayesian analyses produce
credibility intervals that are superficially similar to confidence
intervals. Nevertheless, the approach is different and the
conclusions can also be assumption dependent. It should also
be recognized that when the results obtained by different
methods provide different interpretations, this can provide
important information about the study and the data and can
help, rather than hinder, the true interpretation.
One recent example of the application of Bayesian methods

is an analysis of food composition data from transgenic maize.66

In this approach, the authors discuss the choice of an
appropriate prior probability, the practicalities of applying the
methodology, and the interpretation of the results. They
contrast the results obtained with those obtained using the
traditional significance testing approach. They base their
methodology on guidelines produced by the FDA67 for the
use of Bayesian statistics in the assessment of clinical trials for
medical devices. Harrison et al. suggest that the Bayesian
approach has a number of advantages such as removing the
need to correct for multiple comparisons or to make separate
tests for significance or equivalence, easier presentation, and
interpretation of probability statements and the use of
credibility intervals.66

Bayesian methods now have many proponents and are an
area of statistics whose influence is likely to grow in the future.
Some proponents are particularly “bullish”. For example, in an
open letter, John Kruschke stated the following: “Null-
hypothesis significance testing (NHST), with its reliance on p
values, has many problems. There is little reason to persist with
NHST now that Bayesian methods are accessible to every-
one.”68

In summary, this paper was aimed at providing an overview
of some of the statistical concepts that relate to experimental
work on the composition of crops and factors that influence the
composition. First, it was stressed that experimental design
precedes the statistical analysis and that without an appropriate
design there is no valid analysis. Second, statistical significance
should not be equated with biological importance and should
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not be the primary objective of a statistical analysis. The p value
that is often reported depends on the experimental design, the
variability of material, and the statistical test used. It is not a
measure of the size of an effect. Third, this paper aimed to
point out that the NHST approach has been subject to criticism
by many statisticians for some time, with alternative approaches
such as estimation and confidence limits preferred to
hypothesis testing being preferred by some, whereas others
have suggested the development of Bayesian methods. Fourth, I
aimed to highlight alternative approaches based around
concepts such as equivalence testing and the use of multivariate
methods for the exploration and visualization of complex data
that can lend insight to the variability in samples. Finally, this
paper suggests that it is important to relate the effect size of
interest to concepts such as power and sample size so that
appropriate experiments are designed and to encourage domain
scientists to work toward a consensus on size of effects to be
considered biologically important.
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